A review on cerium-based conversion coatings on aluminium surfaces

Authors

  • Samira Naghdi Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany Author
  • Vesna Mišković Stanković Faculty of Ecology and Environmental Protection, University Union-Nikola Tesla, Belgrade, Serbia Author

DOI:

https://doi.org/10.18485/uunt_gsc230101009n

Keywords:

cerium, corrosion, electrodeposition, EIS, polarization measurements

Abstract

Conversion coatings containing hexavalent chromium (chromate) have been widely used for decades as part of corrosion protection systems on aluminium alloys. However, chromates are prohibited in many fields due to their toxicity and should be replaced by “green” environmentally friendly alternatives. Cerium-based conversion coatings (CeCCs) are among the most prospective alternatives because of their anticorrosion efficiency, environmentally friendly characteristics, and low cost. This review is focused on the protective properties of CeCCs on aluminium as a sole protecting coating or as a conversion one in combination with top organic coating.

Downloads

Download data is not yet available.

References

Alba-Galvín, J. J., González-Rovira, L., Botana, F. J., Lekka, M., Andreatta, F., Fedrizzi, L., & Bethencourt, M. (2021). Application of Commercial Surface Pretreatments on the Formation of Cerium Conversion Coating (CeCC) over High-Strength Aluminum Alloys 2024-T3 and 7075-T6. Metals, 11(6), 930.

Allachi, H., Chaouket, F., & Draoui, K. (2010). Protection against corrosion in marine environments of AA6060 aluminium alloy by cerium chlorides. Journal of Alloys and Compounds, 491(1-2), 223-229.

Arurault, L., Monsang, P., Salley, J., & Bes, R. (2004). Electrochemical preparation of adherent ceria coatings on ferritic stainless steel. Thin Solid Films, 466(1-2), 75-80.

Aziz, I., Zhang, Q., & Du, J. (2011). Cerium‐based thermal conversion treatments on silicon carbide reinforced 2009 aluminum alloy composites. Materials and Corrosion, 62(3), 258-263.

Bethencourt, M., Botana, F., Calvino, J., Marcos, M., & Rodriguez-Chacon, M. (1998). Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: a review. Corrosion Science, 40(11), 1803-1819.

Bethencourt, M., Botana, F., Cano, M., & Marcos, M. (2002). High protective, environmental friendly and short-time developed conversion coatings for aluminium alloys. Applied Surface Science, 189(1-2), 162-173.

Bethencourt, M., Botana, F., Cano, M., & Marcos, M. (2004). Advanced generation of green conversion

coatings for aluminium alloys. Applied Surface Science, 238(1-4), 278-281.

Bethencourt, M., Botana, F., Cano, M., Marcos, M., Sánchez-Amaya, J., & González-Rovira, L. (2008). Using EIS to analyse samples of Al–Mg alloy AA5083 treated by thermal activation in cerium salt baths. Corrosion Science, 50(5), 1376-1384.

Bethencourt, M., Botana, F. J., Calvino, J. J., Marcos, M., & Rodriguez-Chacon, M. A. (1998). Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: A review. Corrosion Science, 40(11), 1803-1819. https://doi.org/10.1016/s0010-938x(98)00077-8

Braga, A. V. C., do Lago, D. C. B., Pimenta, A. R., & de Senna, L. F. (2020). The influence of heat treatment of inorganic conversion coatings produced by sol-gel dip coating on the anticorrosive properties of alumina films deposited on steel substrate-Part II: silica/boehmite or boehmite/silica multilayered conversion coatings. Surface and Coatings Technology, 386, 125500.

Campestrini, P., Terryn, H., Hovestad, A., & De Wit, J. (2004). Formation of a cerium-based conversion coating on AA2024: relationship with the microstructure. Surface and Coatings Technology, 176(3), 365-381.

Chen, L.-A., Lu, Y.-S., Lin, Y.-T., & Lee, Y.-L. (2021).

Preparation and characterization of cerium-based conversion coating on a Fe50Mn30Co10Cr10 dual-phase high-entropy alloy. Applied Surface Science, 562, 150200.

Conde, A., Arenas, M., De Frutos, A., & De Damborenea, J. (2008). Effective corrosion protection of 8090 alloy by cerium conversion coatings. Electrochimica Acta, 53(26), 7760-7768.

Creus, J., Brezault, F., Rebere, C., & Gadouleau, M. (2006). Synthesis and characterisation of thin cerium oxide coatings elaborated by cathodic electrolytic deposition on steel substrate. Surface and Coatings Technology, 200(14-15), 4636-4645.

Dabala, M. (2001). , L. Armelao, A. Buchberger, and I. Calliari. Appl. Surf. Sci, 172(3-4), 312-322.

Dabala, M., Armelao, L., Buchberger, A., & Calliari, I. (2001). Cerium-based conversion layers on aluminum alloys. Applied Surface Science, 172(3-4), 312-322. https://doi.org/10.1016/s0169-4332(00)00873-4

Dabala, M., Ramous, E., & Magrini, M. (2004). Corrosion resistance of cerium-based chemical conversion coatings on AA5083 aluminium alloy. Materials and Corrosion-Werkstoffe Und Korrosion, 55(5), 381-386.https://doi.org/10.1002/maco.200303744

De Frutos, A., Arenas, M., Liu, Y., Skeldon, P., Thompson, G., De Damborenea, J., & Conde, A. (2008). Influence of pre-treatments in cerium conversion treatment of AA2024-T3 and 7075-T6 alloys. Surface and Coatings Technology, 202(16), 3797-3807.

Decroly, A., & Petitjean, J.-P. (2005). Study of the deposition of cerium oxide by conversion on to aluminium alloys. Surface and Coatings Technology, 194(1), 1-9.

Deng, C., Xie, X., Han, J., Lu, B., Liang, S., & Zhou, J. (2021). Stabilization of Zn Metal Anode through Surface Reconstruction of a Cerium‐Based Conversion Film. Advanced Functional Materials, 31(51), 2103227.

Exbrayat, L., Steyer, P., Rebere, C., Berziou, C., Savall, C., Ayrault, P., . . . Creus, J. (2014).

Electrodeposition of zinc-ceria nanocomposite coatings in alkaline bath. Journal of Solid State Electrochemistry, 18(1), 223-233. https://doi.org/10.1007/s10008-013-2264-3

Fahrenholtz, W. G., O'Keefe, M. J., Zhou, H., & Grant, J. (2002). Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys. Surface and Coatings Technology, 155(2-3), 208-213.

Fedel, M., Ahniyaz, A., Ecco, L. G., & Deflorian, F. (2014). Electrochemical investigation of the inhibition effect of CeO2 nanoparticles on the corrosion of mild steel. Electrochimica Acta, 131, 71-78. https://doi.org/10.1016/j.electacta.2013.11.164

Gigandet, M., Faucheu, J., & Tachez, M. (1997). Formation of black chromate conversion coatings on pure and zinc alloy electrolytic deposits: role of the main constituents. Surface and Coatings Technology, 89(3), 285-291.

Golden, T. D., & Wang, A. Q. (2003). Anodic electrodeposition of cerium oxide thin films: II. mechanism studies. Journal of the Electrochemical Society, 150(9), C621.

Gulicovski, J., Bajat, J., Jokić, B., Panić, V., Mišković-Stanković, V., & Milonjić, S. (2016). Protective ability and impedance response of sol–gel reversely transformed ceria conversion coating on aluminium. Journal of Solid State Electrochemistry, 20(1), 293-303.

Gulicovski, J. J., Bracko, I., & Milonjic, S. K. (2014).

Morphology and the isoelectric point of nanosized aqueous ceria sols. MaterialsChemistry and Physics, 148(3), 868-873. https://doi.org/10.1016/j.matchemphys.2014.08.0 63

Gulicovski, J. J., Milonjic, S. K., & Szecsenyi, K. M. (2009). Synthesis and Characterization of Stable Aqueous Ceria Sols. Materials and Manufacturing Processes, 24(10-11), 1080-1085. https://doi.org/10.1080/10426910903032162

Hagans, P. L., & Haas, C. (1994). Chromate conversion coatings. ASM Handbook, 5, 405-411.

Hamdy, A. S. (2006). Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys. Materials Letters, 60(21-22), 2633-2637. https://doi.org/10.1016/j.matlet.2006.01.049

Hamlaoui, Y., Pedraza, F., Remazeilles, C., Cohendoz, S., Rébéré, C., Tifouti, L., & Creus, J. (2009).

Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions: Part I. Electrochemical and analytical characterisation. Materials chemistry and physics, 113(2-3), 650-657.

Heller, D. K., Fahrenholtz, W. G., & O’Keefe, M. J. (2009). Effect of phosphate source on post-treatment of cerium-based conversion coatings on Al 2024-T3. Journal of the Electrochemical Society, 156(11), C400.

Heller, D. K., Fahrenholtz, W. G., & O’Keefe, M. J. (2010). The effect of post-treatment time and temperature on cerium-based conversion coatings on Al 2024-T3. Corrosion Science, 52(2), 360-368. Hill, J.-A., Markley, T., Forsyth, M., Howlett, P. C., &

Hinton, B. R. (2011). Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate. Journal of Alloys and Compounds, 509(5), 1683-1690.

Hoang, N., Khoa, T. A., Phuong, P. M., Hang, T. T. X., Van Chi, N., & Nguyen, T.-D. (2022). Corrosion protection of carbon steel using a combination of Zr conversion coating and subsequent zinc-rich silicate coating with a flake ZnAl alloy. Arabian Journal of Chemistry, 103815.

Hollamby, M. J., Borisova, D., Moehwald, H., & Shchukin, D. (2012). Porous 'Ouzo-effect' silica-ceria composite colloids and their application to aluminium corrosion protection. Chemical Communications, 48(1), 115-117. https://doi.org/10.1039/c1cc15992e

Hughes, A., Scholes, F., Glenn, A., Lau, D., Muster, T., & Hardin, S. (2009). Factors influencing the deposition of Ce-based conversion coatings, part I: The role of Al3+ ions. Surface and Coatings Technology, 203(19), 2927-2936.

Hughes, A. E., Taylor, R. J., Hinton, B. R. W., & Wilson, L. (1995). XPS and SEM characterization of

hydrated cerium oxide conversion coatings. Surface and Interface Analysis, 23(7-8), 11.

Ilevbare, G., & Scully, J. (2001). Oxygen reduction reaction kinetics on chromate conversion coated Al-Cu, Al-Cu-Mg, and Al-Cu-Mn-Fe intermetallic compounds. Journal of the Electrochemical Society, 148(5), B196.

Jegdić, B. V., Živković, L. S., Popić, J. P., Bajat, J. B., & Mišković-Stanković, V. B. (2013).

Electrochemical methods for corrosion testing of Ce-based coating prepared on AA6060 alloy by dip immersion method. Journal of the Serbian Chemical Society, 78(7), 997-1011.

Johansen, H. D., Brett, C. M. A., & Motheo, A. J. (2012). Corrosion protection of aluminium alloy by cerium conversion and conducting polymer duplex coatings. Corrosion Science, 63, 342-350. https://doi.org/10.1016/j.corsci.2012.06.020

Johnson, B. Y., Edington, J., Williams, A., & O'Keefe, M. (2005). Microstructural characteristics of cerium oxide conversion coatings obtained by various aqueous deposition methods. Materials Characterization, 54(1), 41-48.

Joshi, S., Fahrenholtz, W. G., & O’Keefe, M. J. (2011).

Effect of alkaline cleaning and activation on aluminum alloy 7075-T6. Applied Surface Science, 257(6), 1859-1863.

Kamde, M. A., Mahton, Y., Ohodnicki, J., Roy, M., & Saha, P. (2021). Effect of cerium-based conversion coating on corrosion behavior of squeeze cast Mg-4 wt% Y alloy in 0.1 M NaCl solution. Surface and Coatings Technology, 421, 127451.

Khast, F., Saybani, M., & Dariani, A. A. S. (2021). Effects of copper and manganese cations on cerium-based conversion coating on galvanized steel: Corrosion resistance and microstructure characterizations. Journal of Rare Earths.

Kolesnikova, A., Abrashov, A., & Grigoryan, N. A high-performance Ti-Zr BASED conversion coating on 5556 aluminum alloy.

Kulp, E. A., Limmer, S. J., Bohannan, E. W., & Switzer, J. A. (2007). Electrodeposition of nanometer-thick ceria films by oxidation of cerium (III)–acetate. Solid State Ionics, 178(11-12), 749-757.

Liu, H., Tong, Z., Yang, Y., Zhou, W., Chen, J., Pan, X., & Ren, X. (2021). Preparation of phosphate conversion coating on laser surface textured surface to improve corrosion performance of magnesium alloy. Journal of Alloys and Compounds, 865, 158701.

Liu, X., Vonk, D., Kisslinger, K., Tong, X., Halada, G., Petrash, S., . . . Chen-Wiegart, Y.-c. K. (2021).

Unraveling the Formation Mechanism of a Hybrid Zr-Based Chemical Conversion Coating with Organic and Copper Compounds for Corrosion Inhibition. ACS Applied Materials & Interfaces, 13(4), 5518-5528.

Lu, C., Mu, S., Du, J., Zhang, K., Guo, M., & Chen, L. (2020). Investigation on the composition and corrosion resistance of cerium-based conversion treatment by alkaline methods on aluminum alloy 6063. RSC Advances, 10(60), 36654-36666.

Lunder, O., Walmsley, J., Mack, P., & Nisancioglu, K. (2005). Formation and characterisation of a chromate conversion coating on AA6060 aluminium. Corrosion Science, 47(7), 1604-1624.

Mansfeld, F., Wang, V., & Shih, H. (1991). Development of “Stainless Aluminum”. Journal of the Electrochemical Society, 138(12), 2.

Mansfeld, F., Wang, Y., & Shih, H. (1992). The Ce-Moprocess for the development of a stainless aluminum. Electrochimica Acta, 37(12), 6.

Naghdi, S., Jaleh, B., & Ehsani, A. (2015). Electrophoretic deposition of graphene oxide on aluminum: characterization, low thermal annealing, surface and anticorrosive properties. Bulletin of the Chemical Society of Japan, 88(5), 722-728.

Naghdi, S., Jaleh, B., & Shahbazi, N. (2016). Reversible wettability conversion of electrodeposited graphene oxide/titania nanocomposite coating: Investigation of surface structures. Applied Surface Science, 368, 409-416.

Naghdi, S., Jevremović, I., Mišković-Stanković, V., & Rhee, K. Y. (2016). Chemical vapour deposition at atmospheric pressure of graphene on molybdenum foil: effect of annealing time on characteristics and corrosion stability of graphene coatings. Corrosion Science, 113, 116-125.

Naghdi, S., & Miskovic-Stankovic, V. (2022). A Review of the Corrosion Behaviour of Graphene Coatings on Metal Surfaces Obtained by Chemical Vapour Deposition. Journal of the Electrochemical Society

Naghdi, S., Nešović, K., Mišković-Stanković, V., & Rhee, K. Y. (2018). Comprehensive electrochemical study on corrosion performance of graphene coatings deposited by chemical vapour deposition at atmospheric pressure on platinum-coated molybdenum foil. Corrosion Science, 130, 31-44.

Naghdi, S., Nešović, K., Sanchez-Arriaga, G., Song, H. Y., Kim, S. W., Rhee, K. Y., & Mišković-Stanković, V. (2020). The effect of cesium dopant on APCVD graphene coating on copper. Journal of Materials Research and Technology, 9(5), 9798-9812.

Naghdi, S., Rhee, K. Y., & Park, S. J. (2017). Oxidation resistance of graphene-coated molybdenum: effects of pre-washing and hydrogen flow rate. International Journal of Refractory Metals and Hard Materials, 65, 29-33.

Nemes, P. I., Zaharescu, M., & Muresan, L. M. (2013). Initial corrosion behavior of composite coatings obtained by co-electrodeposition of zinc with nanoparticles of Ti and Ce oxides. Journal of Solid State Electrochemistry, 17(2), 511-518. https://doi.org/10.1007/s10008-012-1901-6

Onofre-Bustamante, E., Dominguez-Crespo, M. A., Torres-Huerta, A. M., Olvera-Martinez, A., Genesca-Llongueras, J., & Rodriguez-Gomez, F. J. (2009). Characterization of cerium-based conversion coatings for corrosion protection of AISI-1010 commercial carbon steel. Journal of Solid State Electrochemistry, 13(11), 1785-1799. https://doi.org/10.1007/s10008-009-0871-9

epe, A., Aparicio, M., Ceré, S., & Duran, A. (2004).

Preparation and characterization of cerium doped silica sol–gel coatings on glass and aluminum substrates. Journal of Non-Crystalline Solids, 348, 162-171.

Piao, N., Wang, L., Anwar, T., Feng, X., Tian, G., Wang, J., . . . He, X. (2019). Corrosion resistance mechanism of chromate conversion coated aluminium current collector in lithium-ion batteries. Corrosion Science, 158, 108100.

Pinc, W., Geng, S., O’keefe, M., Fahrenholtz, W., & O’keefe, T. (2009). Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3. Applied Surface Science, 255(7), 4061-4065.

Qian, X., Zhan, W., Pan, J., Liu, Y., Huang, F., & Wang, B. (2021). Improving the corrosion resistance of LY12 aluminum alloy via a novel Mo–Zr–Ti composite conversion coating. Materials Research Express, 8(3), 036403.

Rangel, C., Paiva, T., & Da Luz, P. (2008). Conversion coating growth on 2024-T3 Al alloy. The effect of pre-treatments. Surface and Coatings Technology, 202(14), 3396-3402.

Roshan, S., & Sarabi, A. A. (2021). Improved performance of Ti-based conversion coating in the presence of Ce/Co ions: Surface characterization, electrochemical and adhesion study. Surface and Coatings Technology, 410, 126931. Sainis, S., & Zanella, C. (2022). A localized study on the influence of surface preparation on the reactivity of cast Al-7Si-1Fe and Al-7Si-2Cu-1Fe alloys and their effect on cerium conversion coating deposition. Applied Surface Science, 585, 152730.

Schem, M., Schmidt, T., Gerwann, J., Wittmar, M., Veith, M., Thompson, G., . . . Zheludkevich, M. (2009). CeO2-filled sol-gel coatings for corrosion protection of AA2024-T3 aluminium alloy [Article]. Corrosion Science, 51(10), 2304-2315. https://doi.org/10.1016/j.corsci.2009.06.007

Shih, H., & Mansfeld, F. (1992). Passivation in Rare Earth Metal Chlorides - A New Conversion Coating Process for Aluminum Alloys. In V. S. Agarwala & G. M. Ugiansky (Eds.), New Methods for Corrosion Testing of Aluminum Alloys, Issue 1124 (pp. 180-195). ASTM International.

Stoffer, J. O., O'Keefe, T. J., O'Keefe, M., Morris, E. L., Hayes, S. A., Yu, P., . . . Lin, X. (2006). Cerium-based spontaneous coating process for corrosion protection of aluminum alloys.

Stoychev, D. (2013). Corrosion protective ability of electrodeposited ceria layers. Journal of Solid State Electrochemistry, 17(2), 497-509. https://doi.org/10.1007/s10008-012-1937-7

Sun, Z., Kong, G., Zhang, S., Wang, Y., & Che, C. (2021). Growth behaviour of cerium-based conversion coating on HF pre-treated Zn–5% Al alloy. Surface Engineering, 37(4), 455-463.

Tang, J., Han, Z., Zuo, Y., & Tang, Y. (2011). A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating. Applied Surface Science, 257(7), 2806-2812.

Wang, S., & Xu, S. (2021). Ti/Cr (III) conversion coating on aluminium foil for lithium-ion battery package. Surface Engineering, 37(3), 365-372.

Yang, S., Li, S., Meng, Y., Yu, M., Liu, J., & Li, B. (2021). Corrosion inhibition of aluminum current collector with molybdate conversion coating in commercial LiPF6-esters electrolytes. Corrosion Science, 190, 109632.

Yu, X. W., Cao, C. N., Yao, Z. M., Zhou, D. R., & Yin, Z. D. (2001). Study of double layer rare earth metal conversion coating on aluminum alloy LY12. Corrosion Science, 43(7), 1283-1294.

Zand, R. Z., Verbeken, K., & Adriaens, A. (2013). Influence of the Cerium Concentration on the Corrosion Performance of Ce-doped Silica Hybrid Coatings on Hot Dip Galvanized Steel Substrates. International Journal of Electrochemical Science, 8(1), 548-563.

Zhang, H., & Zuo, Y. (2008). The improvement of corrosion resistance of Ce conversion films on aluminum alloy by phosphate post-treatment. Applied Surface Science, 254(16), 4930-4935.

Zhao, D.-W., Liu, C., Zuo, K.-Q., Su, P., Li, L.-B., Xiao, G.-Y., & Cheng, L. (2021). Strontium-zinc phosphate chemical conversion coating improves the osseointegration of titanium implants by regulating macrophage polarization. Chemical Engineering Journal, 408, 127362.

Zhao, J., Xia, L., Sehgal, A., Lu, D., McCreery, R., & Frankel, G. S. (2001). Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3. Surface and Coatings Technology, 140(1), 51-57.

Zhitomirsky, I. (2002). Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Advances in colloid and interface science, 97(1-3), 279-317.

Zhitomirsky, I., & Petric, A. (1999). Electrolytic and electrophoretic deposition of CeO2 films. Materials Letters, 40(6), 263-268.

Zhitomirsky, I., & Petric, A. (2001). Electrochemical deposition of ceria and doped ceria films. Ceramics International, 27(2), 149-155.

Zhou, P., Yang, L., Hou, Y., Duan, G., Yu, B., Li, X., . . . Wang, F. (2021). Grain refinement promotes the formation of phosphate conversion coating on Mg alloy AZ91D with high corrosion resistance and low electrical contact resistance. Corrosion Communications, 1, 47-57.

Zhou, Y., & Switzer, J. A. (1996). Growth of cerium (IV) oxide films by the electrochemical generation of base method. Journal of Alloys and Compounds, 237(1-2), 1-5.

Zuo, K., Wang, L., Wang, Z., Yin, Y., Du, C., Liu, B., . . . Lu, Y. (2022). Zinc-Doping Induces Evolution of Biocompatible Strontium–Calcium-Phosphate Conversion Coating on Titanium to Improve Antibacterial Property. ACS Applied Materials & Interfaces.

Zuo, M., Wu, T., Xu, K., Liu, S., Zhao, D., & Geng, H. (2015). Sol-gel route to ceria coatings on AA2024-T3 aluminum alloy. Journal of Coatings Technology and Research, 12(1), 75-83. https://doi.org/10.1007/s11998-014-9621-8

Živković, L. S., Bajat, J. B., Popić, J. P., Jegdić, B. V., Stevanović, S., & Mišković-Stanković, V. B. (2015). Protective properties of cataphoretic epoxy coating on aluminium alloy AA6060 modified with electrodeposited Ce-based coatings: Effect of post-treatment. Progress in Organic Coatings, 79, 43-52.

Živković, L. S., Jegdić, B. V., Popić, J. P., Bajat, J. B., & Mišković-Stanković, V. B. (2013). The influence of Ce-based coatings as pretreatments on corrosion stability of top powder polyester coating on AA6060. Progress in Organic Coatings, 76(10), 1387-1395.

Živković, L. S., Popić, J. P., Jegdić, B. V., Dohčević-Mitrović, Z., Bajat, J. B., & Mišković-Stanković, V. (2014). Corrosion study of ceria coatings on AA6060 aluminum alloy obtained by cathodic electrodeposition: effect of deposition potential. Surface and Coatings Technology, 240, 327-335.

Downloads

Published

2023-06-30

How to Cite

Naghdi, S., & Mišković Stanković, V. (2023). A review on cerium-based conversion coatings on aluminium surfaces. Global Sustainability Challenges, 1(1), 9-22. https://doi.org/10.18485/uunt_gsc230101009n