A XANES study of the antibacterial activity of silver ions against Acinetobacter baumannii
Keywords:
Antimicrobial-resistance, Bacteria, XANES, Multidrug-resistance, SilverAbstract
One of the most challenging antimicrobial-resistant Gram-negative bacilli to manage and cure is pathogenic Acinetobacter baumannii. Numerous bacterial species, including the tough A. baumannii, are strongly inhibited by silver ions. However, there is currently a scarcity of information regarding the mechanism of silver ions' bactericidal effect. The objective of this research was to use X-ray near-edge structure (XANES) spectroscopy to investigate the antibacterial activity of silver ions against A. baumannii. The local environment around silver ions and their bonding to specific spots in the biomass can be studied using this non-destructive technique. The obtained results demonstrated that the biomass sample of A. baumannii treated with silver included formation of silver bonding to -SH, -NH, and -OH groups, with Ag-N and Ag-O being the most dominant binding types. The presence of uniformly distributed silver at the bacterial cells as revealed by scanning electron microscopy (SEM) suggests that the majority of the silver ions bond to the outer cell membrane of A. baumannii. Accordingly, the antibacterial mechanism most likely involves silver ions connecting to locations in A. baumannii's outer cell membrane as well as to the amino acids.
Downloads
References
Bassetti, M., Ginocchio F, & Mikulska M. (2011). New treatment options against gram- negative organisms. Critical Care, 15, 215. https//doi: 10.1186/cc9997
Bovenkamp G.L., Zanzen U., Krishna K.S., Hormes J., & Prange A. X-Ray Absorption Near-Edge Structure (XANES) Spectroscopy Study of the Interaction of Silver Ions with Staphylococcus aureus, Listeria monocytogenes and
Escherichia coli (2013). Applied Environmental Microbiology, 79, 6385–6390. https//doi: 10.1128/AEM.01688-13
Cochis A., Azzimonti B., Della Valle C., De Giglio E., Bloise N., Visai L., Cometa S., Rimondini L., & Chiesa R. (2016). The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii. Biomaterials, 80, 80-95. https//doi: 10.1016/j.dib.2016.01.024
Dibrov P., Dzioba J., Gosink K.K., & Häse C.C. (2002) Chemiosmotic Mechanism of Antimicrobial Activity of Ag+ in Vibrio cholera. Antimicrobial Agents and Chemotherapy 46, 2668–2670. https//doi: 10.1128/AAC.46.8.2668-2670.2002
Djokić S. Synthesis and Antimicrobial Activity of Silver Citrate Complexes (2008). Bioinorganic Chemistry and Applications, 2008. https//doi:10.1155/2008/436458
Gmelin handbuch der anorganischen chemie (1975), 61/B6, 241- 246 Gupta A., Matsui K., Lo J.F., & Silver, S. (1999). Molecular basis for resistance to silver cations in Salmonella. Nature Medicine, 5, 183-188. PMID: 9930866. https//doi: 10.1038/5545
Hrenović J., Milenković J., Goić-Barišić I., & Rajić N. (2013). Antibacterial activity of modified natural clinoptilolite against clinical isolates of Acinetobacter baumannii. Microporous and Mesoporous Materials, 169, 148-152. https://doi.org/10.1016/j.micromeso.2012.10.026
Ito Y. & Hirano T. (1997).The determination of the partial 18 S ribosomal DNA sequences of Cordyceps species. Letters in Applied Microbiology, 25, 239–242. https://doi:10.1021/jp907669s
Jung W.K., Koo H.C., Kim K.W., Shin S., Kim S.H., & Park Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74, 2171- 2178. https://doi: 10.1128/AEM.02001-07
Kaskatepe B., Kiymaci M.E., Suzuk S., Erdem S.A., Cesur S., & Yildiz S. (2016). Antibacterial effects of cinnamon oil against carbapenem resistant nosocomial Acinetobacter baumannii and Pseudomonas aeruginosa isolates. Industrial Crops and Products, 81, 191-194. https://doi.org/10.1016/j.indcrop.2015.11.058
Lefèvre I., Vogel-Mikuš K., Jeromel L., Vavpetič P., Planchon S., Arčon I., Van Elteren J.T., Lepoint G., Gobert S., Renaut J.,
Pelicon P., & Lutts S. (2014). Differential cadmium and zinc distribution in relation to their physiological impact in the leaves of the accumulating Zygophyllum fabago L. Plant, Cell & Environment, 37, 1299–1320. https://doi: 10.1111/pce.12234
Lemire J., Harrison J., & Turner R. (2013). Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11, 371-384. https://doi: 10.1038/nrmicro3028
Matsumura Y., Yoshikata K., Kunisaki T., & Tsurchido T. (2003). Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Applied and Environmental Microbiology, 69, 4278-4281. https://doi: 10.1128/AEM.69.7.4278-4281.2003
Milenković J., Hrenović J., Goić-Barišić I., Tomić M., Đonlagić J., & Rajić N (2014). Synergistic anti-biofouling effect of Agexchanged zeolite and D-Tyrosine on PVC composite against the clinical isolate of Acinetobacter baumannii. Biofouling, 30, 965-973. https://doi:10.1080/08927014.2014.959941
Miyamoto T., Niimi H., Kitajima Y., Naito T., & Asakura K. (2010). Ag L3-Edge X-ray Absorption Near-Edge Structure of 4d10 (Ag+) Compounds: Origin of the Edge Peak and Its Chemical Relevance. Journal of Physical Chemistry A, 114, 4093–4098. https://doi: 10.1021/jp907669s
Nigro S.J. & Hall R.M. (2012). Antibiotic resistance islands in A320 (RUH134), the reference strain for Acinetobacter baumannii global clone 2. Journal of Antimicrobial Chemotherapy, 67, 335-338. https://doi.org/10.1093/jac/dkr447
Nomiya K., Tsuda K., Sudob T., & Oda M. (1997). Ag(I)-N BondContaining Compound Showing Wide Spectra in Effective Antimicrobial Activities: Polymeric Silver(I) Imidazolate. Journal of Inorganic Biochemistry, 68, 39-44.
Pustijanac, E., Hrenović, J., Vranić-Ladavac, M., Močenić, M., Karčić, N., Lazarić Stefanović, M., Hrstić, I., Lončarić, J., Šeruga Musić, M., Drčcelić, M., Majstorović, D., & Kovačić, I (2023). Dissemination of Clinical Acinetobacter baumannii Isolate to Hospital Environment during the COVID-19 Pandemic. Pathogens, 12, 410. https://doi.org/10.3390/pathogens12030410
Ravel B. & Newville M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537–541. https://doi:10.1107/S0909049505012719
Slawson R.M., Van Dyke M.I., Lee H., & Trevors J.T. (1992). Germanium and Silver Resistance, Accumulation, and Toxicity in Microorganisms. Plasmid, 27, 72-79. https://doi.org/10.1016/0147-619X(92)90008-X
Tiwari V., Roz R., & Tiwari M. (2015). Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens. Frontiers in Microbiology, 6, 618-629. https://doi:10.3389/fmicb.2015.00618
Vogel-Mikuš K., Arčon I., Kump P., Pelicon P., Nečemer M., Vavpetič P., Koren Š., & Regvar M. (2012). Analytical Tools for Exploring Metal Accumulation and Tolerance in Plants. Phytotechnologies: Remediation of Environmental Contaminants. CRC Press, Taylor & Francis Group, Boca Ranton, FL. p. 443
Yahya M.T., Straub T.M., & Gerba C.P. (1992). Inactivation of coliphage MS-2 and poliovirus by copper, silver, and chlorine. Canadian Journal of Microbiology, 38, 430-435. https://doi: 10.1139/m92-072
Urnukhsaikhan E., Bold B.E.,, Gunbileg A., Sukhbaatar, N. & Mishig‑Ochir, T. (2021). Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Scientific reports, 11, 21047. https://doi.org/10.1038/s41598-021-00520-2