Structural changes of fly ash-based geopolymers induced by a large amount of lead
DOI:
https://doi.org/10.18485/uunt_gsc230101043nKeywords:
geopolymer, fly ash, immobilization, leadAbstract
Geopolymers has emerged as possible techological and environmentally solution for the effective immobilization of heavy metals and other toxic materials. In this paper, structural changes of geopolymers induced by large amount of lead (up to 30%) were examined. Geopolymers were synthesized by alkali activation of fly ash using sodium silicate with modulus 1.5 as alkali activator. Lead was added in the form of water-soluble salt - lead-nitrate, during the synthesis of geopolymers. Structural changes of geopolymers due to Pb addition were assessed by means of XRD and 29Si MAS NMR analysis. XRD analysis confirmed that the Pb addition led to the formation of new Pb-phases, which indicated that Pb formed chemical bonds with the geopolymers. 29Si MAS NMR analysis showed the increase of less condensed Q1 and Q2 structural units of geopolymers with Pb addition.
Downloads
References
Criado, M., Fernandez-Jimenez, A. Palomo, A., Sobrados, I., Sanz, J. (2008) Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey. Microporous and Mesoporous Materials, 109, 525–534 https://doi.org/10.1016/j.fuel.2005.03.030
Duxson, P., Provis, J.L., Lukey, G.C., Separovic, F., van Deventer, J.S.J. (2005).29Si NMR Study of Structural Ordering in Aluminosilicate Geopolymer Gels. Langmuir, 21, 3028–3036https://doi.org/10.1021/LA047336X
Duxon, P., Fernandez-Jimenez, A. Provis, J.L., Luckey, G.C., Palomo, A. van Deventer, J.S.J. (2007). Geopolymer technology: the current state of the art. Journal of Materials Science 42, 2917–2933. http://dx.doi.org/10.1007/s10853-006-0637-z
Engelhardth, G. Michel, D. (1987). High resolution solid state NMR of silicates and zeolites, Wiley, New York.
Fayon, F., Bessada, C., Massiot, D., Farnan, I. Coutures, J.P. (1998) 29Si and 207Pb NMR study of local order in lead silicate glasses, Journal of Non-Crystalline Solids, 232-234, 403–408 https://doi.org/10.1016/S0022-3093%2898%2900470-0
Fernandez-Jimenez, A., Palomo, A. (2003). Characterization of fly ashes. Potential reactivity as alkaline cements. Fuel, 82, 2259– 2265. https://doi.org/10.1016/S0016-2361(03)00194-7
Fernández-Jiménez, A., de la Torre, A.G., Palomo, A., Lopez-Olmo, G., Alonso, M.M., Aranda, M.A.G. (2006). Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel, 85, 625– 634 https://doi.org/10.1016/j.micromeso.2007.05.062
Guo, B., Pan, D., Liu, B., Volinsky, A.A., Fincan, M., Du, J., Zhang, S. (2017). Immobilization mechanism of Pb in fly ash-based geopolymer. Construction and Building Materials, 134, 123– 130 https://doi.org/10.1016/j.conbuildmat.2016.12.139
Komljenović, M., Baščarević, Z., Bradić, V. (2010). Mechanical and microstructural properties of alkali-activated fly ash geopolymers. Journal of Hazardous Materials, 181, 35–42 https://doi.org/10.1016/j.jhazmat.2010.04.064
Landrigan, P.J. Boffetta, P. Apostoli, P. (2000). The reproductive toxicity and carcinogenicity of lead: a critical review. American Journal of Industrial Medicine, 38, 231–243 https://doi.org/10.1002/1097-0274(200009)38:3%3C231::AID-AJIM2%3E3.0.CO;2-O
Lee, S. van Riessen, A., Chon, C.M., Kang, N.H., Jou, H.T., Kim, Y.J. (2016). Impact of activator type on the immobilisation of lead in fly ash-based geopolymer. Journal of Hazardous Materials 305, 59–66 https://doi.org/10.1016/j.jhazmat.2015.11.023
Massiot, D., Fayon, F., Capron, M., King, I., Calve, S.L., Alonso, B., Durand, J.O., Bujoli, B., Gan, Z., Hoatson G. (2002). Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 40, 70–76 https://doi.org/10.1002/MRC.984
Nikolić, V., Komljenović, M. Marjanović, N., Baščarević, Z., Petrović, R. (2014). Lead immobilization by geopolymers based on mechanically activated fly ash. Ceramics International, 40, 8479–8488 http://dx.doi.org/10.1016/j.ceramint.2014.01.059
Nikolić, V., Komljenović, M., Baščarević, Z., Marjanović, N., Miladinović, Z., Petrović, R. (2015). The influence of fly ash characteristics and reaction conditions on strength and structure of geopolymers. Construction and Building Materials, 94, 361–370. http://dx.doi.org/10.1016/j.conbuildmat.2015.07.014
Nikolić, V. Komljenović, M. Džunuzović, N. Miladinović, Z. (2018). The influence of Pb addition on fly ash-based geopolymers. Journal of Hazardous Materials, 350, 98–107 https://doi.org/10.1016/j.jhazmat.2018.02.023
Palomo, A. Palacios, M. (2003) Alkali-activated cementitious materials: alternative matrices for the immobilisation of hazardous wastes part II. stabilisation of chromium and lead. Cement and Concrete Research, 33, 289–295 https://doi.org/10.1016/S0008-8846(02)00964-X
Perera, D.S., Aly, Z., Vance, E.R., Mizumo, M. (2005) Immobilization of Pb in a geopolymer matrix. Journal of American Ceramics Society, 88, 2586–2588. https://doi.org/10.1111/j.1551-2916.2005.00438.x
Phair, J.W., van Deventer, J.S.J., Smith, J.D. (2004). Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based geopolymers. Applied Geochemistry, 19, 423–434.https://ui.adsabs.harvard.edu/link_gateway/2004ApGC...19..4 23P/doi:10.1016/S0883-2927(03)00151-3
Provis, J.L., van Deventer, J.S.J. (2009). Geopolymers, structure, processing, properties and industrial applications. WoodHead Publishing, Cambridge.
Ruiz-Santaquiteria, C., Skibsted, J., Fernandez-Jimenez, A. Palomo, A. (2012). Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cement and Concrete Research, 42, 1242–1251 https://doi.org/10.1016/j.cemconres.2012.05.019
Shi, C. Fernández-Jiménez, A. (2006). Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. Journal of Hazardous Materials B ,137, 1656–1663 https://doi.org/10.1016/j.jhazmat.2006.05.008
Shi, C., Fernández-Jiménez, A., Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41, 750–763 https://doi.org/10.1016/j.cemconres.2011.03.016
Toniolo, N., Boccaccini, A. R. (2017). Fly-ash based geopolymers containing added silicate waste. A review. Ceramics International. 43, 14545–14551 https://doi.org/10.1016/j.ceramint.2017.07.221
Van Deventer, J.S.J., Provis, J.L., Duxson, P., Lukey, G.C. (2007). Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 139, 506–513. https://doi.org/10.1016/j.jhazmat.2006.02.044
Van Jaarsveld, J.G.S. Van Deventer, J.S.J., Lorenzen, L. (1997). The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications. Minerals Engineering, 10 (7), 659–669. https://doi.org/10.1016/S0892-6875(97)00046-0
Van Jaarsveld, J.G.S. van Deventer, J.S.J., Lorenzen, L. (1998). Factors affecting the immobilization of metals in geopolymerized fly ash. Metallurgical and Materials Transactions B, 29B, 283–291. https://doi.org/10.1016/S0892-6875(97)00046-0
Wang, Y., Han, F., Mu., J. (2018). Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr (III) in fly ash based geopolymers. Construction and Building Materials, 160, 818–827. https://doi.org/10.1016/j.conbuildmat.2017.12.006
Xu, J.Z., Zhou, Y.L., Chang, Q., Qu, H.Q. (2006). Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers. Materials Letters, 60, 820–822 https://doi.org/10.1016/j.matlet.2005.10.019
Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J. (2008). Geopolymers for immobilization of Cr6+, Cd2+ and Pb2+.Journal of Hazardous Materials, 157, 587–598 http://dx.doi.org/10.1016/j.jhazmat.2008.01.053